A Novel Approach for Optimization in Dynamic Environments Based on Modified Artificial Fish Swarm Algorithm

نویسندگان

  • Danial Yazdani
  • Alireza Sepas-Moghaddam
  • Atabak Dehban
  • Nuno Horta
چکیده

Swarm intelligence algorithms are amongst the most e±cient approaches toward solving optimization problems. Up to now, most of swarm intelligence approaches have been proposed for optimization in static environments. However, numerous real-world problems are dynamic which could not be solved using static approaches. In this paper, a novel approach based on arti ̄cial ̄sh swarm algorithm (AFSA) has been proposed for optimization in dynamic environments in which changes in the problem space occur in discrete intervals. The proposed algorithm can quickly ̄nd the peaks in the problem space and track them after an environment change. In this algorithm, arti ̄cial ̄sh swarms are responsible for ̄nding and tracking peaks and several behaviors and mechanisms are employed to cope with the dynamic environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering and Memory-based Parent-Child Swarm Meta-heuristic Algorithm for Dynamic Optimization

So far, various optimization methods have been proposed, and swarm intelligence algorithms have gathered a lot of attention by academia. However, most of the recent optimization problems in the real world have a dynamic nature. Thus, an optimization algorithm is required to solve the problems in dynamic environments well. In this paper, a novel collective optimization algorithm, namely the Clus...

متن کامل

mNAFSA: A novel approach for optimization in dynamic environments with global changes

Artificial fish swarm algorithm (AFSA) is one of the state-of-the-art swarm intelligence algorithms that is widely used for optimization purposes in static environments. However, numerous real-world problems are dynamic and uncertain, which could not be solved using static approaches. The contribution of this paper is twofold. First, a novel AFSA algorithm, so called NAFSA, has been proposed in...

متن کامل

AN IMPROVED INTELLIGENT ALGORITHM BASED ON THE GROUP SEARCH ALGORITHM AND THE ARTIFICIAL FISH SWARM ALGORITHM

This article introduces two swarm intelligent algorithms, a group search optimizer (GSO) and an artificial fish swarm algorithm (AFSA). A single intelligent algorithm always has both merits in its specific formulation and deficiencies due to its inherent limitations. Therefore, we propose a mixture of these algorithms to create a new hybrid optimization algorithm known as the group search-artif...

متن کامل

Cross-layer Packet-dependant OFDM Scheduling Based on Proportional Fairness

This paper assumes each user has more than one queue, derives a new packet-dependant proportional fairness power allocation pattern based on the sum of weight capacity and the packet’s priority in users’ queues, and proposes 4 new cross-layer packet-dependant OFDM scheduling schemes based on proportional fairness for heterogeneous classes of traffic. Scenario 1, scenario 2 and scenario 3 lead r...

متن کامل

A Framework for Adapting Population-Based and Heuristic Algorithms for Dynamic Optimization Problems

In this paper, a general framework was presented to boost heuristic optimization algorithms based on swarm intelligence from static to dynamic environments. Regarding the problems of dynamic optimization as opposed to static environments, evaluation function or constraints change in the time and hence place of optimization. The subject matter of the framework is based on the variability of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International Journal of Computational Intelligence and Applications

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2016